Правила равенства дробей

Основное свойство дроби, формулировка, доказательство, примеры применения.

Подробно разобрано основное свойство дроби, дана его формулировка, приведено доказательство и поясняющий пример. Также рассмотрено применение основного свойства дроби при сокращении дробей и приведении дробей к новому знаменателю.

Навигация по странице.

Основное свойство дроби – формулировка, доказательство и поясняющие примеры

Все обыкновенные дроби обладают одним очень важным свойством, которое называют основным свойством дроби. Сформулируем основное свойство дроби: если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится дробь, равная данной.

Запишем основное свойство дроби в буквенном виде: для натуральных чисел a , b и m справедливы равенства и .

Приведем доказательство основного свойства дроби. Равенства (a·m)·b=(b·m)·a и (a:m)·b=(b:m)·a справедливы в силу свойств умножения натуральных чисел и свойств деления натуральных чисел, тогда дроби и , а также и равны по определению (смотрите равные и неравные дроби).

Давайте рассмотрим пример, иллюстрирующий основное свойство дроби. Пусть у нас есть квадрат, разделенный на 9 «больших» квадратов, а каждый из этих «больших» квадратов разделен на 4 «маленьких» квадрата. Таким образом, можно также говорить, что исходный квадрат разделен на 4·9=36 «маленьких» квадратов. Закрасим 5 «больших» квадратов. При этом закрашенными окажутся 4·5=20 «маленьких» квадратов. Приведем рисунок, отвечающий нашему примеру.

Закрашенная часть составляет 5/9 исходного квадрата, или, что то же самое, 20/36 исходного квадрата, то есть, дроби 5/9 и 20/36 равны: или . Из этих равенств, а также из равенств 20=5·4 , 36=9·4 , 20:4=5 и 36:4=9 следует, что и .

Для закрепления разобранного материала рассмотрим решение примера.

Числитель и знаменатель некоторой обыкновенной дроби умножили на 62 , после чего числитель и знаменатель полученной дроби разделили на 2 . Равна ли полученная дробь исходной?

Умножение числителя и знаменателя дроби на любое натуральное число, в частности на 62 , дает дробь, которая в силу основного свойства дроби, равна исходной. Основное свойство дроби позволяет утверждать и то, что после деления числителя и знаменателя полученной дроби на 2 получится дробь, которая будет равна исходной дроби.

да, полученная дробь равна исходной.

Применение основного свойства дроби

Основное свойство дроби в основном применяется в двух случаях: во-первых, при приведении дробей к новому знаменателю, и, во-вторых, при сокращении дробей.

Приведение дроби к новому знаменателю – это замена исходной дроби равной ей дробью, но с большим числителем и знаменателем. Для приведения дроби к новому знаменателю и числитель, и знаменатель дроби умножается на некоторое натуральное число, при этом, согласно основному свойству дроби, получается дробь, равная исходной, но с другим числителем и знаменателем. Без приведения дробей к новому знаменателю не обойтись при выполнении действий с обыкновенными дробями.

Основное свойство дроби позволяет проводить сокращение дробей, и в результате переходить от исходной дроби к равной ей дроби, но с меньшим числителем и знаменателем. Сокращение дроби заключается в делении числителя и знаменателя исходной дроби на любой отличный от единицы положительный общий делитель числителя и знаменателя (если таких общих делителей нет, то исходная дробь несократима, то есть, не подлежит сокращению). В частности, деление на наибольший общий делитель приведет исходную дробь к несократимому виду.

www.cleverstudents.ru

Основное свойство дроби

Чтобы сравнить, сложить или вычесть обыкновенные дроби с разными знаменателями, их нужно вначале привести к одинаковому (одному) знаменателю.

Для этого число, от которого взята часть долями (количество долей числа определяет знаменатель), разбивается на большее число долей так, чтобы все знаменатели дробей были кратны между собой.

Например, нужно сравнить, сложить или вычесть дроби и . Рассмотрим на рисунке дробление на доли (1 разделили на 4 части и 1 разделили на 2 части), за целое принимается 1.

Разделив на 2 доли, получаем наглядное сравнение.

Значит, , так как в доли содержится 2 доли по Запишем: . По правилам арифметики: Выделим простые множители в числителе и знаменателе:

Приведенные рисунки позволяют вывести правило, называемое основным свойством дроби.

Правило. Числитель и знаменатель дроби можно умножать или делить на одно и то же натуральное число, от чего величина дроби не изменяется.

Если числитель новой дроби представить произведением (или частным) первой дроби и любого натурального числа, а знаменатель новой дроби — произведением (или частным) знаменателя первой дроби и того же числа, то новая дробь сохраняет при вычислении произведений (или частных) значение (величину) исходной дроби, поэтому между заданной и полученной дробью можно ставить знак равенства.

Можно записать основное свойство дроби при умножении числителя и знаменателя дроби на число:

Можно записать основное свойство дроби при делении числителя и знаменателя дроби на число:

shkolo.ru

Сокращение дробей

С помощью дробей одну и ту же часть целого предмета можно записать разными способами.

На рисунке закрашена половина круга

Таким образом, все эти дроби равны.

Дробь

Для удобства дополнительный множитель записывают на наклонной черте справа над дробью .

Вернёмся ещё раз к нашим дробям и запишем их в другом порядке.

Дробь, равную данной, можно получить, если числитель и знаменатель дроби одновременно разделить на одно и то же число, не равное нулю.

Такое преобразование дроби называют сокращением дроби.

Сокращение дроби обычно записывают следующим образом.

Числитель и знаменатель зачёркиваются чёрточками, и рядом с ними записываются результаты деления (частные) числителя и знаменателя на одно и то же число.

Число, на которое делили числитель и знаменатель, держим в уме.

В нашем примере мы сокращали (то есть делили и числитель, и знаменатель) дробь на двойку, которую держали в уме.

Сокращение дроби можно проводить последовательно.

Сформулируем основное свойство дроби.

Если числитель и знаменатель дроби умножить или разделить на одно и то же число, не равное нулю, то получится дробь, равная данной.

Запишем это свойство в виде буквенных выражений.

, где « a », « b » и « k » — натуральные числа.

math-prosto.ru

Основное свойство дроби. Сокращение дробей. Равенство дробей.

Равенство дробей.

Данная тема достаточно важна на основных свойствах дробей основана вся дальнейшая математика и алгебра. Рассмотренные свойства дробей, не смотря на свою важность очень просты.

Чтобы понять основные свойства дробей рассмотрим окружность.

На окружности видно, что 4 части или доли закрашены из восьми возможных. Запишем полученную дробь \(\frac<4><8>\)

На следующей окружности видно, что закрашена одна часть из двух возможных. Запишем получившеюся дробь \(\frac<1><2>\)

Если внимательно приглядимся, то увидим, что в первом случае, что во втором случае у нас закрашено половина круга, поэтому полученные дроби равны \(\frac<4> <8>= \frac<1><2>\), то есть это одно и тоже число.

Как же это доказать математически? Очень просто, вспомним таблицу умножения и распишем первую дробь на множители.

Что мы сделали? Расписали числитель и знаменатель на множители \(\frac <1 \cdot \color<4>> <2 \cdot \color<4>>\), а потом разделили дроби \(\frac<1> <2>\cdot \color <\frac<4><4>>\). Четыре поделить на четыре это 1, а единица умноженное на любое число это и есть само число. То что мы проделали в приведенном примере называется сокращением дробей.

Посмотрим еще один пример и сократим дробь.

Мы опять расписали числитель и знаменатель на множители и одинаковый числа в числители и знаменатели сократили. То есть два деленное на два дало единицу, а единица умноженная на любое число дает тоже самое число.

Основное свойство дроби.

Отсюда следует основное свойство дроби:

Если и числитель, и знаменатель дроби умножить на одно и тоже число (кроме нуля), то величина дроби не изменится.

Также можно дроби числитель и знаменатель делить на одно и тоже число одновременно.
Рассмотрим пример:

Если и числитель, и знаменатель дроби делить на одно и тоже число (кроме нуля), то величина дроби не изменится.

Дроби у которых есть и в числители, и в знаменатели общие простые делители называются сократимыми дробями.

Пример сократимой дроби: \(\frac<2><4>, \frac<6><10>, \frac<9><15>, \frac<10><5>, …\)

Так же есть и несократимые дроби.

Несократимая дробь – это дробь у которые нет в числители и знаменатели общих простых делителей.

Пример несократимой дроби: \(\frac<1><2>, \frac<3><5>, \frac<5><7>, \frac<13><5>, …\)

Любое число можно представить в виде дроби, потому что любое число делиться на единицу, например:

Вопросы к теме:
Как вы думаете любую можно дробь сократить или нет?
Ответ: нет, бывают сократимые дроби и несократимые дроби.

Проверьте справедливо ли равенство: \(\frac<7> <11>= \frac<14><22>\)?
Ответ: распишем дробь \(\frac<14> <22>= \frac<7 \cdot 2> <11 \cdot 2>= \frac<7><11>\), да справедливо.

Пример №1:
а) Найдите дробь со знаменателем 15, равную дроби \(\frac<2><3>\).
б) Найдите дробь с числителем 8, равную дроби \(\frac<1><5>\).

Решение:
а) Нам нужно чтобы в знаменателе стояло число 15. Сейчас в знаменателе число 3. На какое число нужно умножить цифру 3, чтобы получить 15? Вспомним таблицу умножения 3⋅5. Нам надо воспользоваться основным свойством дробей и умножить и числитель, и знаменатель дроби \(\frac<2><3>\) на 5.

б) Нам нужно чтобы в числителе стояло число 8. Сейчас в числители стоит число 1. На какое число нужно умножить цифру 1, чтобы получить 8? Конечно, 1⋅8. Нам надо воспользоваться основным свойством дробей и умножить и числитель, и знаменатель дроби \(\frac<1><5>\) на 8. Получим:

Пример №2:
Найдите несократимую дробь, равную дроби: а)\(\frac<16><36>\), б) \(\frac<10><25>\).

Пример №3:
Запишите число в виде дроби: а) 13 б)123

tutomath.ru

Урок по теме равенство дробей, 5 класс, учебник Никольский С. М. и др.

Успейте воспользоваться скидками до 50% на курсы «Инфоурок»

Напоминаем, что в соответствии с профстандартом педагога (утверждён Приказом Минтруда России), если у Вас нет соответствующего преподаваемому предмету образования, то Вам необходимо пройти профессиональную переподготовку по профилю педагогической деятельности. Сделать это Вы можете дистанционно на сайте проекта «Инфоурок» и получить диплом с присвоением квалификации уже через 2 месяца!

Только сейчас действует СКИДКА 50% для всех педагогов на все 111 курсов профессиональной переподготовки! Доступна рассрочка с первым взносом всего 10%, при этом цена курса не увеличивается из-за использования рассрочки!

Выбранный для просмотра документ Карточка для практической работы.docx

Карточка 1

Карточка 2

Задание. Посмотрите на рисунки и сделайте вывод о равенстве дробей.

Подсказка 1. Какая часть кругов и квадратов закрашена?

Подсказка 1. Запишите дроби, обозначающие закрашенную часть каждой фигуры.

Подсказка 2. Сделайте вывод о равенстве полученных дробей.

Выбранный для просмотра документ Технологическая карта урока математики в 5 классе.docx

Технологическая карта урока математики в 5 классе

Тема урока: «Равенство дробей» (учебник «Математика 5», Никольский С. М., Потапов М. К. и др.)

Цели (задачи) урока:

познакомить учащихся с основным свойством дроби, показать его применение для сокращения дробей;

— учить сокращать дроби и определять несократимые;

— развивать умение применять математические знания для решения практических задач;

— воспитывать культуру поведения при групповой работе;

— воспитывать интерес к предмету.

— знать основное свойство дроби, определение сокращения дробей и несократимой дроби;

— уметь приводить дроби к новому знаменателю, сокращать дроби;

понимать смысл поставленной задачи; инициатива, находчивость, активность при решении математических задач;

— умение видеть математическую задачу в контексте проблемной ситуации;

— понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Тип урока, педагогическая технология

Изучение нового, технология проблемного диалога.

Доска, мел, компьютер с мультимедийным проектором, интерактивная доска, раздаточные материалы, ролик с физкультминуткой, листы самооценки

Опорные понятия, термины

Новые понятия и связи между ними

Сократимая дробь, несократимая дробь

Контроль, самоконтроль на уроке

Используемые методы, приёмы, формы

Универсальные учебные действия

I . Организационный момент.

Тетради вы получили на перемене, так как домашнее задание все выполнили и вопросов по нему не возникло.

Проявление доброжелательного внимания.

Проверка наличия учебных средств, рациональное размещение на парте

Взаимное приветствие, контроль присутствующих, проверка готовности кабинета к уроку.

Готовность учащихся к обучению, деятельности

II . Актуализация знаний

Давайте вспомним то, что мы изучали на прошлых уроках. Что мы изучали? (дроби)

1. Что записывается под чертой дроби?

2.Что он показывает?

3.Что записывается над чертой дроби?

4.Что он показывает?

5.Какое действие заменяет черта дроби?

6. Найти ¼ от 120.

8. Найти 3/7 от 140.

Голосуют сигнальными карточками

(на сколько частей разделили целое)

(сколько таких частей взяли)

Тестовые задания, ответы даются с помощью сигналов разного цвета

Регулятивные: волевая саморегуляция.

Личностные : действие смыслообразования, мотивация учения

планирование учебного сотрудничества с учителем и со сверстниками.

Готовность к открытию нового

III . Постановка проблемы

Сейчас я предлагаю вам решить такую задачу-сказку. Проблемная задача

В некотором царстве, в некотором государстве жил – был царь, и было у него три сына. Вот как–то созвал он своих сыновей и говорит: “Сыночки вы мои милые, видно, пришло мне время уходить на покой. Собрал я вас, чтобы разделить между вами наследство, наше царство – государство. Да вот беда – учёные–то наши видно что–то напутали. Тебе, старший мой сын, отписано нашего государства, тебе, средний мой сын, — , а тебе, младшенький мой — ”. Возмутился младший сын: “За что меня–то обделили?” И рассорились братья меж собой. А царь издал указ “Кто сумеет ошибку найти и сынов моих помирить, того ждёт царская награда. ”

Ребята, а мы с вами можем помирить царя и его сыновей? Что для этого нам нужно выяснить?

Значит, чему, вероятно, мы будем учиться на сегодняшнем уроке?

И давайте попробуем сформулировать тему нашего урока.

Откройте свои тетради, подпишите в них число, классная работа и тему урока «Равенство дробей».

(Равны дроби или нет)

(Узнавать, равны дроби или нет)

формулирование цели урока

Постановка проблемы, формулировка цели, темы урока

IV . Планирование решения учебной задачи

А сейчас помогите мне составить план урока, то есть определить то, чем мы будем заниматься.

(1. Научиться определять, равны дроби или нет.

Регулятивные: планирование познавательной деятельности

Составление плана урока

Древняя китайская поговорка гласит: «Я слышу и забываю, я вижу и запоминаю, я делаю и понимаю». И для того чтобы понять тему сегодняшнего урока, проведем практическую работу.

У каждого из вас на столе лежат карточки.

Возьмите карточку 1.

Поработаем с квадратом. Разделите квадрат на четыре равные части и закрасьте три из них. Какая часть

квадрата оказалась закрашенной?

Каждую четверть квадрата разделите на 4 части. На сколько частей теперь

А сколько таких частей в трех закрашенных четвертях квадрата?

Какая часть квадрата закрашена?

Что же вы можете сказать о дробях ¾ и 12/16?

Возьмите карточку 2 и ответьте на вопросы:

1. Какая часть от целого изображена и закрашена на рисунках? Подпишите под каждым кругом, какая его часть закрашена.

Что вы можете сказать об этих дробях?

Значит, одну и ту же часть можно записать по–разному.

Давайте внимательно посмотрим на эти дроби. Как можно из одной дроби получить другую, например, как из ¾ получить 12/16?

А как из 4/8 получить 2/4, ½?

Делаем вывод, формулируем правило:

Ребята, свойство, которое мы с вами сейчас сформулировали, очень важное и называется оно основным свойством дроби.

Запишите, пожалуйста, с доски правило и формулы.

a, b, c – натуральные. Обратите на это внимание, это очень важно, т. к. на 0 делить нельзя.

(умножить числитель и знаменатель на 4)

(поделить числитель и знаменатель на 2, на 4)

(При умножении и делении числителя и знаменателя дроби на одно и то же число (кроме 0) её величина не изменится .)

Познавательные: сравнение, обобщение, формулирование вывода

Выполнение практической работы. Формулировка основного свойства дроби

VI . Формирование способа действия

Представьте следующие дроби: в виде дроби со знаменателем 12.

Представьте следующие дроби: в виде дроби со знаменателем 3.

Письменно: замените дроби равными им дробями с меньшими знаменателями. Ребята, преобразование, которое мы с вами только что выполняли, называется сокращением дробей.

Запишите с экрана, что такое сокращение дроби.

Разделить числитель и знаменатель одной дроби на одно и то же число, значит сократить её.

Если числитель и знаменатель дроби не имеют общих простых делителей, то эта дробь называется несократимой.

Выполняют задания. Записывают в тетради, что такое сокращение дробей и что такое несократимая дробь

Регулятивные: коррекция действий и результатов

Первичное усвоение и применение основного свойства дроби, определения сокращения дробей, несократимой дроби

VII . Формирование новых знаний и способов действия

Давайте теперь вернёмся к плану нашего урока. Что мы уже сделали? Что ещё нужно сделать?

Отлично. Сейчас я предлагаю вам немножко поиграть.

Объединимся в две группы. Первая группа ( I ряд) из всех предложенных дробей

выберет дроби, равные 1/2, а вторая группа ( II ряд) — дроби, равные 1/3.

-А теперь проверим, как вы справились с заданием.

Теперь вернёмся к сказочной задаче, которая вызвала у нас затруднения в начале урока. Скажите, теперь вы можете ответить на вопрос задачи: напутали ли что-то советники царя?

А сейчас ещё немного потренируемся. Возьмите в руки листочки с тренировочными упражнениями, внимательно прочтите задания и выполняйте их.

(Научились определять, равны ли дроби. Нужно потренироваться)

(Теперь можем. Наследство поделили поровну, т. к. представленные дроби равны)

Тренировочные упражнения на карточках

Работа с интерактивной доской. Работа в группах

Коммуникативные: определение целей и функций участников в группе; инициативное сотрудничество; контроль, коррекция, оценка действий партнера.

Применение и отработка новых знаний и способов действия

VIII . Подведение итогов урока, рефлексия, домашнее задание

Что новое Вы узнали на уроке? Как вы это узнали? Все ли пункты плана урока мы успели выполнить? Какой способ деятельности (практическая работа, самостоятельный поиск) Вам понравился больше всего? Чему старались научиться на уроке (обсуждаем предметные и метапредметные умения)?

Определим домашнее задание.

Оцените свою деятельность на уроке с помощью оценочного листа

(Основное свойство дроби, что значит сократить дробь, какая дробь называется несократимой)

Регулятивные: рефлексия результатов и способов деятельности

Подведение итогов урока, получение домашнего задания

Выбранный для просмотра документ Тренировочные упражнения.docx

Тренировочные упражнения

Просмотрите тренировочные упражнения.

Выберите одно или два из них.

Выполните его. Можно обратиться за помощью к учебнику; за советом к однокласснику, учителю.

1. Докажи верность равенств

а) = ; б) = ; в) = ; г) = .

2. Найдите значение каждой буквы, при котором верно равенство

а) = ; г) = ; ж) = ;

б) = ; д) = ; з) 2 = ;

в) = ; е) = ; и) 0 = .

3. Сколько в ; в ; в

а) двенадцатых долей;

б) восемнадцатых долей;

в) тридцать шестых долей?

Посмотрите на задания первого и второго вариантов работы и выберите вариант

Я предлагаю выбрать В-1 тем, у кого были трудности при решении предыдущих

Написать четыре дроби, каждая из

которых равна .

а) ; б) ?

Написать дроби со знаменателями 10, 15, 25 равные .

Сколько сотых долей содержится в

а) ; б) ?

infourok.ru

Смотрите еще:

  • Закон изменение активности Закон изменение активности N0 - количество радиоактивных ядер в момент времени t = 0. Cреднее время жизни τ - Период полураспада T1/2 - время, за которое первоначальное количество радиоактивных ядер […]
  • Фоп 3 группа единый налог Единый налог - 3 группа (2018) Смотрите Часто задаваемые вoпросы о 3 группе Основные ограничения с 2016 года (актуальны и в 2018 году): 1) годовой лимит дохода - дo 5 000 000 гpивен (было в 2015 гoду 20 000 […]
  • Some any no every правило Секреты английского языка Сайт для самостоятельного изучения английского языка онлайн Местоимения some, any, no, every и их производные Posted on 2013-05-06 by admin in Английский для начинающих // 5 […]
Закладка Постоянная ссылка.

Комментарии запрещены.