Случайная величина имеет закон распределения

Случайная величина имеет закон распределения

Раздел 6. Типичные законы распределения и числовые характеристики случайных величин

Вид функций F(x), р(х), или перечисление р(хi) называют законом распределения случайной величины. Хотя можно представить себе бесконечное разнообразие случайных величин, законов распределения гораздо меньше. Во-первых, различные случайные величины могут иметь совершенно одинаковые законы распределения. Например: пусть y принимает всего 2 значения 1 и -1 с вероятностями 0.5; величина z = -y имеет точно такой же закон распределения.
Во-вторых, очень часто случайные величины имеют подобные законы распределения, т.е., например, р(х) для них выражается формулами одинакового вида, отличающимися только одной или несколькими постоянными. Эти постоянные называются параметрами распределения .

Хотя в принципе возможны самые разные законы распределения, здесь будут рассмотрены несколько наиболее типичных законов. Важно обратить внимание на условия, в которых они возникают, параметры и свойства этих распределений.

1 . Равномерное распределение
Так называют распределение случайной величины, которая может принимать любые значения в интервале (a,b), причем вероятность попадания ее в любой отрезок внутри (a,b) пропорциональна длине отрезка и не зависит от его положения, а вероятность значений вне (a,b) равна 0.


Рис 6.1 Функция и плотность равномерного распределения

Параметры распределения: a , b

2 . Нормальное распределение
Распределение с плотностью, описываемой формулой

(6.1)

называется нормальным. (Рисунок 6.2)
Параметры распределения: a , σ


Рисунок 6.2 Типичный вид плотности и функции нормального распределения

3 . Распределение Бернулли
Если производится серия независимых испытаний, в каждом из который событие А может появиться с одинаковой вероятностью р, то число появлений события есть случайная величина, распределенная по закону Бернулли , или по биномиальному закону (другое название распределения) .

(6.2)

Здесь n — число испытаний в серии, m — случайная величина (число появлений события А), Рn(m) — вероятность того, что А произойдет именно m раз, q = 1 — р (вероятность того, что А не появится в испытании).

Пример 1: Кость бросают 5 раз, какова вероятность того, что 6 очков выпадет дважды ?
n = 5, m = 2, p = 1/6, q = 5/6

Параметры распределения: n , р

4 . Распределение Пуассона
Распределение Пуассона получается как предельный случай распределения Бернулли, если устремить р к нулю, а n к бесконечности, но так, чтобы их произведение оставалось постоянным: nр = а. Формально такой предельный переход приводит к формуле

(6.3)

Параметр распределения: a

Распределению Пуассона подчиняются очень многие случайные величины, встречающиеся в науке и практической жизни.

Пример 2: число вызовов, поступающих на станцию скорой помощи в течение часа.
Разобьем интервал времени Т (1 час) на малые интервалы dt, такие что вероятность поступления двух и более вызовов в течение dt пренебрежимо мала, а вероятность одного вызова р пропорциональна dt: р = μdt ;
будем рассматривать наблюдение в течение моментов dt как независимые испытания, число таких испытаний за время Т: n = T / dt;
если предполагать, что вероятности поступления вызовов не меняются в течение часа, то полное число вызовов подчиняется закону Бернулли с параметрами: n = T / dt, р = μdt . Устремив dt к нулю, получим, что n стремится к бесконечности, а произведение n×р остается постоянным: а = n×р = μТ.

Пример 3: число молекул идеального газа в некотором фиксированном объеме V.
Разобьем объем V на малые объемы dV такие, что вероятность нахождения двух и более молекул в dV пренебрежимо мала, а вероятность нахождения одной молекулы пропорциональна dV: р = μdV; будем рассматривать наблюдение каждого объемчика dV как независимое испытание, число таких испытаний n=V/dV; если предполагать, что вероятности нахождения молекулы в любом месте внутри V одинаковы, полное число молекул в объеме V подчиняется закону Бернулли с параметрами: n = V / dV, р = μdV. Устремив dV к нулю, получим, что n стремится к бесконечности, а произведение n×р остается постоянным: а = n×р =μV.

Числовые характеристики случайных величин

1 . Математическое ожидание (среднее значение)

Определение:
Математическим ожиданием называется
— для дискретной случайной величины: &nbsp (6.4)

Сумма берется по всем значениям, которые принимает случайная величина. Ряд должен быть абсолютно сходящимся (в противном случае говорят, что случайная величина не имеет математического ожидания)

— для непрерывной случайной величины: ; &nbsp (6.5)

Интеграл должен быть абсолютно сходящимся (в противном случае говорят, что случайная величина не имеет математического ожидания)

Свойства математического ожидания:

a . Если С — постоянная величина, то МС = С
b . МСх = СМх
c . Математическое ожидание суммы случайных величин всегда равно сумме их математических ожиданий: М(х+y) = Мх + Мy d . Вводится понятие условного математического ожидания. Если случайная величина принимает свои значения хi с различными вероятностями p(xi/Hj) при разных условиях Hj, то условное математическое ожидание определяется

как или ; &nbsp (6.6)

Если известны вероятности событий Hj, может быть найдено полное

математическое ожидание: ; &nbsp (6.7)

Пример 4: Сколько раз в среднем надо бросать монету до первого выпадения герба ? Эту задачу можно решать «в лоб»

dfe3300.karelia.ru

Закон распределения дискретной случайной величины. Примеры решения задач

Как известно, случайной величиной называется переменная величина, которая может принимать те или иные значения в зависимости от случая. Случайные величины обозначают заглавными буквами латинского алфавита (X, Y, Z), а их значения – соответствующими строчными буквами (x, y, z). Случайные величины делятся на прерывные (дискретные) и непрерывные.

Дискретной случайной величиной называется случайная величина, принимающая лишь конечное или бесконечное (счетное) множество значений с определенными ненулевыми вероятностями.

Законом распределения дискретной случайной величины называется функция, связывающая значения случайной величины с соответствующими им вероятностями. Закон распределения может быть задан одним из следующих способов.

1. Закон распределения может быть задан таблицей:

События X = xi (i = 1, 2, 3,…,n) являются несовместными и единственно возможными, т.е. они образуют полную систему событий. Поэтому сумма их вероятностей равна единице: р123+…+рn = ∑pi =1

2. Закон распределения может быть задан аналитически (формулой) P(X = xi) = ϕ(xi). Например:

а) с помощью биномиального распределения: Pn(X=k) = Сn k p k q n-k , 0 0, k = 0, 1, 2, … .

в) с помощью функции распределения F(x), определяющей для каждого значения x вероятность того, что случайная величина X примет значение, меньшее x, т.е. F(x) = P(X 2 или D(X) = M(X 2 )−[M(X)] 2 . Разность X–M(X) называют отклонением случайной величины от ее математического ожидания.
Для биномиального распределения D(X)=npq, для распределения Пуассона D(X)=λ

  • Среднее квадратическое отклонение (стандартное отклонение) σ(X)=√D(X).
  • Примеры решения задач по теме «Закон распределения дискретной случайной величины»

    Выпущено 1000 лотерейных билетов: на 5 из них выпадает выигрыш в сумме 500 рублей, на 10 – выигрыш в 100 рублей, на 20 – выигрыш в 50 рублей, на 50 – выигрыш в 10 рублей. Определить закон распределения вероятностей случайной величины X – выигрыша на один билет.

    Решение. По условию задачи возможны следующие значения случайной величины X: 0, 10, 50, 100 и 500.

    Число билетов без выигрыша равно 1000 – (5+10+20+50) = 915, тогда P(X=0) = 915/1000 = 0,915.

    Аналогично находим все другие вероятности: P(X=0) = 50/1000=0,05, P(X=50) = 20/1000=0,02, P(X=100) = 10/1000=0,01, P(X=500) = 5/1000=0,005. Полученный закон представим в виде таблицы:

    Найти математическое ожидание числа очков, выпадающих при бросании игральной кости.

    Решение. Случайная величина X числа очков принимает значения 1, 2, 3, 4, 5, 6. Вероятность того, что выпадет одно из данных значений равна 1/6. Закон распределения представим в виде таблицы:

    Найдем математическое ожидание величины Х: М(Х) = 1*1/6 + 2*1/6 + 3*1/6 + 4*1/6 + 5*1/6 + 6*1/6 = (1+2+3+4+5+6)/6 = 21/6 = 3,5

    Устройство состоит из трех независимо работающих элементов. Вероятность отказа каждого элемента в одном опыте равна 0,1. Составить закон распределения числа отказавших элементов в одном опыте, построить многоугольник распределения. Найти функцию распределения F(x) и построить ее график. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение дискретной случайной величины.

    Решение. 1. Дискретная случайная величина X= <число отказавших элементов в одном опыте>имеет следующие возможные значения: х1=0 (ни один из элементов устройства не отказал), х2=1 (отказал один элемент), х3=2 (отказало два элемента) и х4=3 (отказали три элемента).

    Отказы элементов независимы друг от друга, вероятности отказа каждого элемента равны между собой, поэтому применима формула Бернулли. Учитывая, что, по условию, n=3, р=0,1, q=1-р=0,9, определим вероятности значений:
    P3(0) = С3 0 p 0 q 3-0 = q 3 = 0,9 3 = 0,729;
    P3(1) = С3 1 p 1 q 3-1 = 3*0,1*0,9 2 = 0,243;
    P3(2) = С3 2 p 2 q 3-2 = 3*0,1 2 *0,9 = 0,027;
    P3(3) = С3 3 p 3 q 3-3 = р 3 =0,1 3 = 0,001;
    Проверка: ∑pi = 0,729+0,243+0,027+0,001=1.

    Таким образом, искомый биномиальный закон распределения Х имеет вид:

    www.ekonomika-st.ru

    Случайные величины. Дискретная случайная величина.
    Математическое ожидание

    Второй раздел по теории вероятностей посвящён случайным величинам, которые незримо сопровождали нас буквально в каждой статье по теме. И настал момент чётко сформулировать, что же это такое:

    Случайной называют величину, которая в результате испытания примет одно и только одно числовое значение, зависящее от случайных факторов и заранее непредсказуемое.

    Случайные величины, как правило, обозначают через *, а их значения – соответствующими маленькими буквами с подстрочными индексами, например, .

    * Иногда используют , а также греческие буквы

    Пример встретился нам на первом же уроке по теории вероятностей, где мы фактически рассмотрели следующую случайную величину:

    – количество очков, которое выпадет после броска игрального кубика.

    В результате данного испытания выпадет одна и только грань, какая именно – не предсказать (фокусы не рассматриваем); при этом случайная величина может принять одно из следующий значений:

    .

    – количество мальчиков среди 10 новорождённых.

    Совершенно понятно, что это количество заранее не известно, и в очередном десятке родившихся детей может оказаться:

    , либо мальчиков – один и только один из перечисленных вариантов.

    И, дабы соблюсти форму, немного физкультуры:

    – дальность прыжка в длину (в некоторых единицах).

    Её не в состоянии предугадать даже мастер спорта 🙂

    Тем не менее, ваши гипотезы?

    Коль скоро, множество действительных чисел бесконечно, то случайная величина может принять бесконечно много значений из некоторого промежутка. И в этом состоит её принципиальное отличие от предыдущих примеров.

    Таким образом, случайные величины целесообразно разделить на 2 большие группы:

    1) Дискретная (прерывная) случайная величина – принимает отдельно взятые, изолированные значения. Количество этих значений конечно либо бесконечно, но счётно.

    …нарисовались непонятные термины? Срочно повторяем основы алгебры!

    2) Непрерывная случайная величина – принимает все числовые значения из некоторого конечного или бесконечного промежутка.

    Примечание: в учебной литературе популярны аббревиатуры ДСВ и НСВ

    Сначала разберём дискретную случайную величину, затем – непрерывную.

    Закон распределения дискретной случайной величины

    – это соответствие между возможными значениями этой величины и их вероятностями. Чаще всего закон записывают таблицей:

    Довольно часто встречается термин ряд распределения, но в некоторых ситуациях он звучит двусмысленно, и поэтому я буду придерживаться «закона».

    А теперь очень важный момент: поскольку случайная величина обязательно примет одно из значений , то соответствующие события образуют полную группу и сумма вероятностей их наступления равна единице:

    или, если записать свёрнуто:

    Так, например, закон распределения вероятностей выпавших на кубике очков имеет следующий вид:

    Возможно, у вас сложилось впечатление, что дискретная случайная величина может принимать только «хорошие» целые значения. Развеем иллюзию – они могут быть любыми:

    Некоторая игра имеет следующий закон распределения выигрыша:

    Найти

    …наверное, вы давно мечтали о таких задачах 🙂 Открою секрет – я тоже. В особенности после того, как завершил работу над теорией поля.

    Решение: так как случайная величина может принять только одно из трёх значений, то соответствующие события образуют полную группу, а значит, сумма их вероятностей равна единице:

    Разоблачаем «партизана»:

    – таким образом, вероятность выигрыша условных единиц составляет 0,4.

    Контроль: , в чём и требовалось убедиться.

    Ответ:

    Не редкость, когда закон распределения требуется составить самостоятельно. Для этого используют классическое определение вероятности, теоремы умножения / сложения вероятностей событий и другие фишки тервера:

    В коробке находятся 50 лотерейных билетов, среди которых 12 выигрышных, причём 2 из них выигрывают по 1000 рублей, а остальные – по 100 рублей. Составить закон распределения случайной величины – размера выигрыша, если из коробки наугад извлекается один билет.

    Решение: как вы заметили, значения случайной величины принято располагать в порядке их возрастания. Поэтому мы начинаем с самого маленького выигрыша, и именно рублей.

    Всего таковых билетов 50 – 12 = 38, и по классическому определению:
    – вероятность того, что наудачу извлечённый билет окажется безвыигрышным.

    С остальными случаями всё просто. Вероятность выигрыша рублей составляет:

    И для :

    Проверка: – и это особенно приятный момент таких заданий!

    Ответ: искомый закон распределения выигрыша:

    Следующее задание для самостоятельного решения:

    Вероятность того, что стрелок поразит мишень, равна . Составить закон распределения случайной величины – количества попаданий после 2 выстрелов.

    …я знал, что вы по нему соскучились 🙂 Вспоминаем теоремы умножения и сложения. Решение и ответ в конце урока.

    Закон распределения полностью описывает случайную величину, однако на практике бывает полезно (а иногда и полезнее) знать лишь некоторые её числовые характеристики.

    Математическое ожидание дискретной случайной величины

    Говоря простым языком, это среднеожидаемое значение при многократном повторении испытаний. Пусть случайная величина принимает значения с вероятностями соответственно. Тогда математическое ожидание данной случайной величины равно сумме произведений всех её значений на соответствующие вероятности:

    или в свёрнутом виде:

    Вычислим, например, математическое ожидание случайной величины – количества выпавших на игральном кубике очков:

    очка

    В чём состоит вероятностный смысл полученного результата? Если подбросить кубик достаточно много раз, то среднее значение выпавших очков будет близкО к 3,5 – и чем больше провести испытаний, тем ближе. Собственно, об этом эффекте я уже подробно рассказывал на уроке о статистической вероятности.

    Теперь вспомним нашу гипотетическую игру:

    Возникает вопрос: а выгодно ли вообще играть в эту игру? …у кого какие впечатления? Так ведь «навскидку» и не скажешь! Но на этот вопрос можно легко ответить, вычислив математическое ожидание, по сути – средневзвешенный по вероятностям выигрыш:

    , таким образом, математическое ожидание данной игры проигрышно.

    Не верь впечатлениям – верь цифрам!

    Да, здесь можно выиграть 10 и даже 20-30 раз подряд, но на длинной дистанции нас ждёт неминуемое разорение. И я бы не советовал вам играть в такие игры 🙂 Ну, может, только ради развлечения.

    Из всего вышесказанного следует, что математическое ожидание – это уже НЕ СЛУЧАЙНАЯ величина.

    Творческое задание для самостоятельного исследования:

    Мистер Х играет в европейскую рулетку по следующей системе: постоянно ставит 100 рублей на «красное». Составить закон распределения случайной величины – его выигрыша. Вычислить математическое ожидание выигрыша и округлить его до копеек. Сколько в среднем проигрывает игрок с каждой поставленной сотни?

    Справка: европейская рулетка содержит 18 красных, 18 чёрных и 1 зелёный сектор («зеро»). В случае выпадения «красного» игроку выплачивается удвоенная ставка, в противном случае она уходит в доход казино

    Существует много других систем игры в рулетку, для которых можно составить свои таблицы вероятностей. Но это тот случай, когда нам не нужны никакие законы распределения и таблицы, ибо доподлинно установлено, что математическое ожидание игрока будет точно таким же. От системы к системе меняется лишь дисперсия, о которой мы узнаем во 2-й части урока.

    Но прежде будет полезно размять пальцы на клавишах калькулятора:

    Случайная величина задана своим законом распределения вероятностей:

    Найти , если известно, что . Выполнить проверку.

    Тогда переходим к изучению дисперсии дискретной случайной величины, и по возможности, ПРЯМО СЕЙЧАС!! – чтобы не потерять нить темы.

    Решения и ответы:

    Пример 3. Решение: по условию – вероятность попадания в мишень. Тогда:
    – вероятность промаха.

    Составим – закон распределения попаданий при двух выстрелах:

    – ни одного попадания. По теореме умножения вероятностей независимых событий:

    – одно попадание. По теоремам сложения вероятностей несовместных и умножения независимых событий:

    – два попадания. По теореме умножения вероятностей независимых событий:

    Проверка: 0,09 + 0,42 + 0,49 = 1

    Ответ:

    Примечание: можно было использовать обозначения – это не принципиально.

    Пример 4. Решение: игрок выигрывает 100 рублей в 18 случаях из 37, и поэтому закон распределения его выигрыша имеет следующий вид:

    Вычислим математическое ожидание:

    Таким образом, с каждой поставленной сотни игрок в среднем проигрывает 2,7 рубля.

    Пример 5. Решение: по определению математического ожидания:

    поменяем части местами и проведём упрощения:

    таким образом:

    Выполним проверку:

    , что и требовалось проверить.

    Ответ:

    Автор: Емелин Александр

    (Переход на главную страницу)

    Качественные работы без плагиата – Zaochnik.com

    mathprofi.ru

    Смотрите еще:

    • Кбк на налог по усн 2014 год доходы КБК по УСН в 2017 году Какие КБК при УСН применять в 2017 году? Какие КБК с объектом «доходы» и «доходы минус расходы»? Как изменятся КБК по «упрощенке» в 2017 году? Расскажем об этом в нашей статьей. Срок […]
    • Решения об отмене решения о ликвидации юридического лица образец Отмена ликвидации ООО: пошаговая инструкция Обновление: 2 августа 2017 г. Образец протокола об отмене ликвидации ООО Принятие участниками/учредителями юридического лица, включая ООО, решения об отмене […]
    • Займ по расписке иркутск Нотариус Другова Наталья Витальевна Иркутский нотариальный округ +7 (3952) 47-84-47 44-63-04 Договор займа Если Вам необходимо оформить договор займа в городе Иркутске, Вы можете обратиться в нашу […]
    Закладка Постоянная ссылка.

    Обсуждение закрыто.