Теория вероятности случайная величина закон распределения

1.6. Случайные величины и функции распределения

Понятие случайной величины является одним из основных понятий теории вероятностей. Под данным термином подразумевается величина, значения которой зависят от случая и для которой определена функция распределения вероятностей. Функцией распределения вероятностей случайной величины ξ называется вероятность того, что ξ примет значение, меньшее, чем произвольное число х:

Случайные величины принято обозначать греческими буквами, а принимаемые ими значения – строчными латинскими [23]. В зависимости от характера принимаемых значений различают 2 основных класса случайных величин: дискретные и непрерывные.

Дискретные случайные величины могут принимать только конечное или счетное множество значений. Соответствие между всеми возможными значениями дискретной случайной величины и их вероятностями называется законом распределения данной случайной величины.

Пусть ξ – дискретная случайная величина, единственно возможными значениями которой являются числа x1,x2. xn. Обозначим через

вероятности этих значений. Тогда закон распределения случайной величины ξ задает таблица

Непрерывной называется случайная величина, все возможные значения которой целиком заполняют некоторый конечный или бесконечный промежуток числовой оси. Для любой непрерывной случайной величины существует неотрицательная функция f(x), при любых х удовлетворяющая равенству: $F(x) = \int\limits_< - \infty >^x $.

Функция f(x) называется плотностью распределения вероятностей непрерывной случайной величины.

Плотность распределения вероятностей обладает следующими свойствами:
1. f(x)≥0.
2. При любых x1 и x2 удовлетворяет равенству $P\left\ < <\leqslant \xi 2 .

Таким образом, математическое ожидание представляет собой характеристику центральной тенденции (типичного значения) случайной величины, а дисперсия – меры ее рассеяния.

В заключение следует также охарактеризовать независимые и зависимые случайные величины. Две случайные величины считаются независимыми, если возможные значения и закон распределения каждой из них один и тот же при любом выборе допустимых значений другой. В противном случае случайные величины называются зависимыми. Несколько случайных величин являются взаимно независимыми, если возможные значения и законы распределения любой из них не зависят от того, какие возможные значения приняли остальные случайные величины.

journal.forens-lit.ru

Лекция 1_06: Теория вероятностей. Случайные величины

При реальном использовании теории вероятностей к пространству элементарных событий никогда не обращаются. Это понятие нужно для теоретических обоснований вероятностных схем. Наиболее часто рассматриваются случайные схемы, в которых событием является появление какого-то числа. Для таких схем вводится понятие случайной величины . Этому понятию и будет посвящена наша лекция. Мы рассмотрим случайные величины, способы их задания (так называемые законы распределения ), числовые характеристики случайных величин, а также наиболее часто встречающиеся законы распределения.

Случайной величиной называется отображение множества элементарных событий в множество вещественных (или целых) чисел

Предполагается такая схема: в результате случайного эксперимента выбирается одно из элементарных событий, по нему вычисляется значение функции, и это значение наблюдается. Упомянутое отображение определяет вероятности появления тех или иных значений случайной величины.

Например, пусть множество элементарных событий состоит из двухкратных бросаний игральной кости, что дает 36 элементарных исходов. Пусть функция ξ определена как сумма значений, выпавших на костях. Очевидно, такая случайная величина может принимать значения от 2 до 12. При этом значению 2 соответствует одно элементарное событие, а, скажем, значению 9 — четыре: (3,6), (4,5), (5,4) и (6,3).

Обычно наблюдаются и изучаются не элементарные события, множество которых нам совершенно неизвестно, а именно случайные величины. Чтобы задать их вероятностное поведение, нужно задать вероятности того, что случайная величина принимает то или иное значение. Рассмотренный нами пример случайной величины мы сможем опеределить так:

Попробуйте сами составить таблицу вероятностей суммы очков трех бросаний игральной кости.

Определение вероятностей, с которыми случайная величина принимает свои значения называется ее законом распределения .

Функция распределения случайной величины

Одним из важнейших способов задания закона распределения — это задание функции распределения .

Функцией распределения случайной величины ξ называется функция

На рисунке изображена
функция распределения случайной величины, рассмотренной в качестве примера.

Для наглядности область под графиком функции закрашена в серый цвет. Отчетливо видно, что эта функция монотонно неубывает и кусочно-постоян­ная. Она имеет скачки в точках, соответствую­щих значениям, вероятность которых положительна.

Такая функция распределения частно называется интегральной . Когда она непрерывна и у нее есть производная, то эту производную часто называют плотностью распределения . Если функция распределения, как в нашем примере, кусочно-постоянна, но роль плотности может играть набор скачков.

Задавать произвольную функцию распределения дело хлопотное. Для упрощения используются два подхода.

Во-первых, часто можно ограничиться некоторыми очень простыми численными характеристиками случайной величины.

Во-вторых, имеются часто встречающиеся классы вероятностных распределений, и часто по каким-то «модельным» соображениям можно понять, к какому классу принадлежит данное распределение. В этом случае достаточно только задать параметры этого распределения.

Эти подходы мы сейчас и рассмотрим.

Характеристики случайных величин

Пусть задана случайная величина ξ , принимающая конечное число значений a1 , a2 , . ak с вероятностями
p1 , p2 , . pk . Математическим ожиданием этой случайной величины называется сумма Eξ = Σ i О 1:k piai.

Как определяется математическое ожидание для более общего случая, нужно говорить отдельно: используются интегралы, но вас уже учили, что интеграл определяется через интегральные суммы, и для случайных величин можно вводить близкие к ним дискретные случайные величины, математические ожидания которых будут играть роль интегральных сумм для математического ожидания исходной случайной величины.

Математическое ожидание, как видно из этой формулы, можно трактовать как центр тяжести набора масс pi , сосредоточенных в точках ai . Естественно, что и свойства его нам хорошо знакомы как свойства центра тяжести:

  • если случайная величина с вероятностью 1 принимает значение a , т. е., если k = 1 , то Eξ = a,
  • если η = cξ , где c — постоянная, то Eη = cEξ ,
  • для любых ξ и η выполняется E(ξ + η) = Eξ + Eη .
  • Дисперсией случайной величины называется математическое ожидание квадрата отклонения этой случайной величины от ее математического ожидания .

    Это определение сначала вызывает тихий ужас. На самом деле, это очень удобное словесное описание формулы. Слова математическое ожидание означают, что мы должны написать
    Dξ = E (. )
    квадрата уточняет
    Dξ = E (. ) 2
    отклонения относится уже к выражению в скобках
    Dξ = E (. − . ) 2
    случайной величины от ее математического ожидания завершает написание формулы
    Dξ = E (ξ − Eξ) 2

    Дисперсию можно трактовать как момент инерции того же набора масс относительно его центра тяжести. Ее свойства нам тоже хорошо знакомы:

  • если случайная величина с вероятностью 1 принимает значение a , то Dξ = 0,
  • если η = cξ , где c — постоянная, то Dη = c 2 Dξ .
  • Хотелось бы иметь и равенство D(ξ + η) = Dξ + Dη , но оно верно только для случая независимых случайных величин .
  • Случайные величины ξ и η называются независимыми , если для любых a и b независимы события <ξ и <η .

    Легко убедиться в том, что если мы суммируем n независимых и одинаково распределенных случайных величин с математическим ожиданием a и дисперсией b , то для их суммы математическое ожидание и дисперсия равны соответственно n a и n b , а для среднего арифметического — соответственно a и b/n .

    Значит, если мы хотим оценить какое-то число, которое является математическим ожиданием некоторой случайной величины, мы можем устроить случайное испытание — наблюдать много раз эту случайную величину и вычислить среднее арифметическое. Его разброс вокруг истинного значения будет уменьшаться с ростом числа наблюдений: сто раз измеришь — в десять раз уменьшится (так как важна не сама дисперсия, а корень из нее). Этот факт лежит в основе важного вычислительного метода статистического моделирования .

    Отметим, что по аналогии со случайными событиями можно различать взаимно независимые и попарно независимые случайные величины. Для упомянутого свойства дисперсий вполне достаточно, чтобы случайные величины были независимы попарно. Используются и другие характеристики, но эти самые важные. Сейчас мы рассмотрим некоторые важные типы распределений и каждый раз будем указвать их математическое ожидание.

    Типы распределений

    Равномерное распределение

    Случайная величина распределена равномерно в промежутке [a,b] , где a , если ее функция распределения
    F(x) равна 0 при x , 1 при x > b и меняется линейно от 0 до 1 при a .

    Математическое ожидание такой случайной величины равно (a + b)/2 , а дисперсия — (ba) 2 /12 .

    На рисунке показан график этой функции распределения для a = 0 и b = 1 .

    Этот закон распределения нам очень важен, так как все стандартные компьютерные датчики случайных величин ( псевдослучайные числа ) моделируют именно такие случайные величины, а из них уже и создаются нужные нам случайные величины.

    Показательное распределение

    Случайная величина распределена показательно или экспоненциально , если она неотрицательна и F(x) = 1 − exp(−λ x) , где λ — положительная константа.

    Математическое ожидание такой случайной величины равно λ − 1 , а дисперсия — λ − 2 .

    На рисунке показан график этой функции распределения для λ = 3 .

    Этот закон распределения нам часто встречается в приложениях, особенно в радиотехнических и коммуникационных. В частности, часто предполагается, что время разговора двух абонентов распределено по показательному закону.

    Нормальное распределение

    Это самое популярное из стандартных распределений вероятности, и на первый взгляд может показаться странным, что наиболее распространена такая сложная формула .

    Случайная величина распределена нормально или по Гауссу , если (справа портрет К. Ф. Гаусса (1777-1855))

    Эта функция зависит от параметров a и σ . Математическое ожидание такой случайной величины равно a , а дисперсия — σ 2 .

    На графике показана стандартная функция с a = 0 и σ = 1 .

    Причина частого появления этого закона в приложениях в том, что при сло­жении случайных вели­чин очень часто распределение их суммы, рассматриваемой в качестве случайной величины, приближается к нормальному.

    В наших задачах оно встречаться не будет, но не упомянуть о нем было бы неприлично.

    Распределение Бернулли

    Это простейшее дискретное распределение названо в честь швейцарского математика Якова Бернулли старшего (1654-1705) , (еще был и младший, работавший в Петербурге).

    Случайная величина распределена по Бернулли , если она принимает всего два значения. Обычно этими значениями являются 1, вероятность которой равна p ,
    и 0, вероятность которого равна q = 1 − p.

    Математическое ожидание такой случайной величины равно p , а дисперсия — pq .

    Такой график вы, конечно, построите сами.

    Закон Бернулли очень удобен для всякого рода модельных построений, он всего чуть сложнее, чем его частный случай — бросание монеты, где p = 1/2 .

    Биномиальное распределение

    Случайная величина ξ , равная сумме n независимых одинаковых бернуллиевских случайных величин, имеет биномиальное распределение . Для нее

    Математическое ожидание такой случайной величины равно np , а дисперсия — npq .

    Биномиальное распределение при увеличении числа слагаемых n становится очень похожим на нормальное распределение.

    Нужно только подходящим образом нормировать случайную величину: вычесть математическое ожидание и поделить на корень из дисперсии, т. е. вместо ξ рассматривать
    η = (ξ — np)(npq) − 1/2 .

    Если же с ростом n вероятность p уменьшается, причем так, что сохраняется или стабилизируется произведение np , получается другое классическое распределение, которое мы сейчас опишем.

    Распределение Пуассона

    Это распределение предложено французским математиком Симеоном Пуассоном (1781-1840) , почетным членом Петербургской Академии наук.

    Случайная величина ξ имеет пуассоновское распределение , если

    Математическое ожидание такой случайной величины равно λ , и дисперсия тоже λ .

    Пуассоновское распределение характерно для схемы редких событий — в которой складывается очень много случайных величин с распределением Бернулли и очень малой вероятностью положительного исхода у каждого.

    Например, отмечалось, что количество писем, опущенных в почтовый ящик с ненадписанным конвертом, имеет пуассоновское распределение.

    Упражнения

      Случайная величина принимает значения 0 с вероятностью 0.3, 2 с вероятностью 0.2, 4 с вероятностью 0.5. Найдите ее математическое ожидание и дисперсию.

    Две случайных величины имеют математическое ожидание 0 и дисперсию 1. В каких пределах может меняться дисперсия их суммы. Постройте пример с наибольшим и наименьшим значением дисперсии суммы.

    Экзаменационные вопросы

    Случайные величины и их функции распределения.

    Математическое ожидание и дисперсия. Их свойства.

    www.math.spbu.ru

    Дискретная случайная величина и функция её распределения

    Определение дискретной случайной величины и ряд её распределения

    Случайной величиной называется переменная, которая может принимать те или иные значения в зависимости от различных обстоятельств, и в свою очередь, случайная величина называется дискретной, если множество её значений конечно или счётно.

    Кроме дискретных случайных величин существуют также непрерывные случайные величины.

    Рассмотрим более подробно понятие случайной величины. На практике часто встречаются величины, которые могут принимать некоторые значения, но нельзя достоверно предсказать, какое именно значение каждая из них примет в рассматриваемом опыте, явлении, наблюдении. Например, число мальчиков, которые родятся в Москве в ближайший день, может быть различным. Оно может быть равным нулю (не родится ни одного мальчика: родятся все девочки или вообще не будет новорождённых), одному, двум и так далее до некоторого конечного числа n. К подобным величинам относятся: масса корнеплода сахарной свеклы на участке, дальность полёта артиллерийского снаряда, количество бракованных деталей в партии и так далее. Такие величины будем называть случайными. Они характеризуют все возможные результаты опыта или наблюдения с количественной стороны.

    Примерами дискретных случайных величин с конечным числом значений могут служить число родившихся детей в течение дня в населённом пункте, число пассажиров автобуса, число пассажиров, перевезённых московским метро за сутки и т. п.

    Число значений дискретной случайной величины может быть и бесконечным, но счётным множеством. Но в любом случае их можно в каком-то порядке пронумеровать, или, более точно — установить взаимно-однозначное соответствие между значениями случайной величины и натуральными числами 1, 2, 3, . n.

    Внимание: новое, очень важное понятие теории вероятностей — закон распределения. Пусть дискретная случайная величина X может принимать n значений: . Будем считать, что они все различны (в противном случае одинаковые должны быть объединены) и расположены в возрастающем порядке. Для полной характеристики дискретной случайной величины должны быть заданы не только все её значения, но и верояности , с которыми случайная величина принимает каждое из значений, т. е. .

    Законом распределения дискретной случайной величины называется любое правило (функция, таблица) p(x), позволяющее находить вероятности всевозможных событий, связанных со случайной величиной (например, вероятность того, что она пример какое-то значение или попадёт в какой-то интервал).

    Наиболее просто и удобно закон распределения дискретной случайной величины задавать в виде следующей таблицы:

    function-x.ru

    Дискретные случайные величины

    Случайной величиной называют переменную величину, которая в результате каждого испытания принимает одно заранее неизвестное значение, зависящее от случайных причин. Случайные величины обозначают заглавными латинскими буквами: $X,\ Y,\ Z,\ \dots $ По своему типу случайные величины могут быть дискретными и непрерывными.

    Дискретная случайная величина — это такая случайная величина, значения которой могут быть не более чем счетными, то есть либо конечными, либо счетными. Под счетностью имеется ввиду, что значения случайной величины можно занумеровать.

    Пример 1. Приведем примеры дискретных случайных величин:

    а) число попаданий в мишень при $n$ выстрелах, здесь возможные значения $0,\ 1,\ \dots ,\ n$.

    б) число выпавших гербов при подкидывании монеты, здесь возможные значения $0,\ 1,\ \dots ,\ n$.

    в) число прибывших кораблей на борт (счетное множество значений).

    г) число вызовов, поступающих на АТС (счетное множество значений).

    1. Закон распределения вероятностей дискретной случайной величины.

    Дискретная случайная величина $X$ может принимать значения $x_1,\dots ,\ x_n$ с вероятностями $p\left(x_1\right),\ \dots ,\ p\left(x_n\right)$. Соответствие между этими значениями и их вероятностями называется законом распределения дискретной случайной величины. Как правило, это соответствие задается с помощью таблицы, в первой строке которой указывают значения $x_1,\dots ,\ x_n$, а во второй строке соответствующие этим значениям вероятности $p_1,\dots ,\ p_n$.

    $\begin<|c|c|>
    \hline
    X_i & x_1 & x_2 & \dots & x_n \\
    \hline
    p_i & p_1 & p_2 & \dots & p_n \\
    \hline
    \end$

    Пример 2. Пусть случайная величина $X$ — число выпавших очков при подбрасывании игрального кубика. Такая случайная величина $X$ может принимать следующие значения $1,\ 2,\ 3,\ 4,\ 5,\ 6$. Вероятности всех этих значений равны $1/6$. Тогда закон распределения вероятностей случайной величины $X$:

    $\begin<|c|c|>
    \hline
    1 & 2 & 3 & 4 & 5 & 6 \\
    \hline
    1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\
    \hline
    \end$

    Замечание. Поскольку в законе распределения дискретной случайной величины $X$ события $1,\ 2,\ \dots ,\ 6$ образуют полную группу событий, то в сумме вероятности должны быть равны единице, то есть $\sum=1$.

    2. Математическое ожидание дискретной случайной величины.

    Математическое ожидание случайной величины задает ее «центральное» значение. Для дискретной случайной величины математическое ожидание вычисляется как сумма произведений значений $x_1,\dots ,\ x_n$ на соответствующие этим значениям вероятности $p_1,\dots ,\ p_n$, то есть: $M\left(X\right)=\sum^n_$. В англоязычной литературе используют другое обозначение $E\left(X\right)$.

    Свойства математического ожидания $M\left(X\right)$:

    1. $M\left(X\right)$ заключено между наименьшим и наибольшим значениями случайной величины $X$.
    2. Математическое ожидание от константы равно самой константе, т.е. $M\left(C\right)=C$.
    3. Постоянный множитель можно выносить за знак математического ожидания: $M\left(CX\right)=CM\left(X\right)$.
    4. Математическое ожидание суммы случайных величин равно сумме их математических ожиданий: $M\left(X+Y\right)=M\left(X\right)+M\left(Y\right)$.
    5. Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий: $M\left(XY\right)=M\left(X\right)M\left(Y\right)$.
    6. Пример 3. Найдем математическое ожидание случайной величины $X$ из примера $2$.

      Можем заметить, что $M\left(X\right)$ заключено между наименьшим ($1$) и наибольшим ($6$) значениями случайной величины $X$.

      Пример 4. Известно, что математическое ожидание случайной величины $X$ равно $M\left(X\right)=2$. Найти математическое ожидание случайной величины $3X+5$.

      Используя вышеуказанные свойства, получаем $M\left(3X+5\right)=M\left(3X\right)+M\left(5\right)=3M\left(X\right)+5=3\cdot 2+5=11$.

      Пример 5. Известно, что математическое ожидание случайной величины $X$ равно $M\left(X\right)=4$. Найти математическое ожидание случайной величины $2X-9$.

      Используя вышеуказанные свойства, получаем $M\left(2X-9\right)=M\left(2X\right)-M\left(9\right)=2M\left(X\right)-9=2\cdot 4-9=-1$.

      3. Дисперсия дискретной случайной величины.

      Возможные значения случайных величин с равными математическими ожиданиями могут по-разному рассеиваться вокруг своих средних значений. Например, в двух студенческих группах средний балл за экзамен по теории вероятностей оказался равным 4, но в одной группе все оказались хорошистами, а в другой группе — только троечники и отличники. Поэтому возникает необходимость в такой числовой характеристике случайной величины, которая бы показывала разброс значений случайной величины вокруг своего математического ожидания. Такой характеристикой является дисперсия.

      Дисперсия дискретной случайной величины $X$ равна:

      В англоязычной литературе используются обозначения $V\left(X\right),\ Var\left(X\right)$. Очень часто дисперсию $D\left(X\right)$ вычисляют по формуле $D\left(X\right)=\sum^n_—<\left(M\left(X\right)\right)>^2$.

      Свойства дисперсии $D\left(X\right)$:

    7. Дисперсия всегда больше или равна нулю, т.е. $D\left(X\right)\ge 0$.
    8. Дисперсия от константы равна нулю, т.е. $D\left(C\right)=0$.
    9. Постоянный множитель можно выносить за знак дисперсии при условии возведения его в квадрат, т.е. $D\left(CX\right)=C^2D\left(X\right)$.
    10. Дисперсия суммы независимых случайных величин равна сумме их дисперсий, т.е. $D\left(X+Y\right)=D\left(X\right)+D\left(Y\right)$.
    11. Дисперсия разности независимых случайных величин равна сумме их дисперсий, т.е. $D\left(X-Y\right)=D\left(X\right)+D\left(Y\right)$.
    12. Пример 6. Вычислим дисперсию случайной величины $X$ из примера $2$.

      Пример 7. Известно, что дисперсия случайной величины $X$ равна $D\left(X\right)=2$. Найти дисперсию случайной величины $4X+1$.

      Используя вышеуказанные свойства, находим $D\left(4X+1\right)=D\left(4X\right)+D\left(1\right)=4^2D\left(X\right)+0=16D\left(X\right)=16\cdot 2=32$.

      Пример 8. Известно, что дисперсия случайной величины $X$ равна $D\left(X\right)=3$. Найти дисперсию случайной величины $3-2X$.

      Используя вышеуказанные свойства, находим $D\left(3-2X\right)=D\left(3\right)+D\left(2X\right)=0+2^2D\left(X\right)=4D\left(X\right)=4\cdot 3=12$.

      4. Функция распределения дискретной случайной величины.

      Способ представления дискретной случайной величины в виде ряда распределения не является единственным, а главное он не является универсальным, поскольку непрерывную случайную величину нельзя задать с помощью ряда распределения. Существует еще один способ представления случайной величины — функция распределения.

      Функцией распределения случайной величины $X$ называется функция $F\left(x\right)$, которая определяет вероятность того, что случайная величина $X$ примет значение, меньшее некоторого фиксированного значения $x$, то есть $F\left(x\right)=P\left(X 6$, то $F\left(x\right)=P\left(X=1\right)+P\left(X=2\right)+P\left(X=3\right)+P\left(X=4\right)+P\left(X=5\right)+P\left(X=6\right)=1/6+1/6+1/6+1/6+1/6+1/6=1$.

      График функции распределения $F\left(x\right)$:

      www.wikimatik.ru

      Решение задач по ТОЭ, ОТЦ, Высшей математике, Физике, Программированию.

      § 3. СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

      Понятие случайной величины является основным в теории вероятностей и ее приложениях. Случайными величинами, например, являются число выпавших очков при однократном бросании игральной кости, число распавшихся атомов радия за данный промежуток времени, число вызовов на телефонной станции за некоторый промежуток времени, отклонение от номинала некоторого размера детали при правильно налаженном технологическом процессе и т. д.
      Таким образом, случайной величиной называется переменная величина, которая в результате опыта может принимать то или иное числовое значение.
      В дальнейшем мы рассмотрим два типа случайных величин — дискретные и непрерывные.

      1. Дискретные случайные величины.

      Рассмотрим случайную величину * , возможные значения которой образуют конечную или бесконечную последовательность чисел x1, x2, . xn, . . Пусть задана функция p(x), значение которой в каждой точке x=xi (i=1,2, . ) равно вероятности того, что величина примет значение xi

      Такая случайная величина называется дискретной (прерывной). Функция р(х) называется законом распределения вероятностей случайной величины, или кратко, законом распределения. Эта функция определена в точках последовательности x1, x2, . xn, . . Так как в каждом из испытаний случайная величина принимает всегда какое-либо значение из области ее изменения, то

      Пример 1. Случайная величина — число очков, выпадающих при однократном бросании игральной кости. Возможные значения — числа 1, 2, 3, 4, 5 и 6. При этом вероятность того, что примет любое из этих значений, одна и та же и равна 1/6. Какой будет закон распределения ? (Решение)

      Пример 2. Пусть случайная величина — число наступления события A при одном испытании, причем P(A)=p. Множество возможных значений состоит из 2-х чисел 0 и 1: =0, если событие A не произошло, и =1, если событие A произошло. Таким образом,

      Предположим, что производится n независимых испытаний, в результате каждого из которых может наступить или не наступить событие A. Пусть вероятность наступления события A при каждом испытании равна p. Рассмотрим случайную величину — число наступлений события A при n независимых испытаниях. Область изменения состоит из всех целых чисел от 0 до n включительно. Закон распределения вероятностей р(m) определяется формулой Бернулли (13′):

      Закон распределения вероятностей по формуле Бернулли часто называют биномиальным, так как Pn(m) представляет собой m-й член разложения бинома .
      Пусть случайная величина может принимать любое целое неотрицательное значение, причем

      где — некоторая положительная постоянная. В этом случае говорят, что случайная величина распределена по закону Пуассона, Заметим, что при k=0 следует положить 0!=1.
      Как мы знаем, при больших значениях числа n независимых испытаний вероятность Pn(m) наступления m раз события A удобнее находить не по формуле Бернулли, а по формуле Лапласа [см. формулу (15)]. Однако последняя дает большие погрешности при малой вероятности р появления события А в одном испытании. В этом случае для подсчета вероятности Pn(m) удобно пользоваться формулой Пуассона, в которой следует положить .
      Формулу Пуассона можно получить как предельный случай формулы Бернулли при неограниченном увеличении числа испытаний n и при стремлении к нулю вероятности .

      Пример 3. На завод прибыла партия деталей в количестве 1000 шт. Вероятность того, что деталь окажется бракованной, равна 0,001. Какова вероятность того, что среди прибывших деталей будет 5 бракованных? (Решение)

      Распределение Пуассона часто встречается и в других задачах. Так, например, если телефонистка в среднем за один час получает N вызовов, то, как можно показать, вероятность Р(k) того, что в течение одной минуты она получит k вызовов, выражается формулой Пуассона, если положить .

      Если возможные значения случайной величины образуют конечную последовательность x1, x2, . xn, то закон распределения вероятностей случайной величины задают в виде следующей таблицы, в которой и

      www.toehelp.ru

      Смотрите еще:

      • Случайная величина имеет закон распределения Случайная величина имеет закон распределения Раздел 6. Типичные законы распределения и числовые характеристики случайных величин Вид функций F(x), р(х), или перечисление р(хi) называют законом распределения […]
      • Случайная величина распределена по нормальному закону найти вероятность Вычисление вероятности заданного отклонения нормальной случайной величины; Вероятность попадания в заданный интервал нормальной случайной величины Если случайная величина Х задана плотностью распределения […]
      • Вычисление интеграла правила Методы вычисления неопределенных интегралов Первообразная и неопределенный интеграл Первообразная F(x) от функции f(x) – это такая функция, производная которой равна f(x) : F′(x) = f(x), x ∈ Δ , где Δ – […]
    Закладка Постоянная ссылка.

    Обсуждение закрыто.