Закон джоуля ленца в интегральной и дифференциальной формах

Рассмотрим произвольный участок цепи, к концам которого приложено напряжение U. За время dt через каждое сечение проводника проходит заряд

При этом силы электрического поля, действующего на данном участке, совершают работу:

Разделив работу на время, получим выражение для мощности:

Полезно вспомнить и другие формулы для мощности и работы:

В 1841 г. манчестерский пивовар Джеймс Джоуль и в 1843 г. петербургский академик Эмилий Ленц установили закон теплового действия электрического тока.

Независимо друг от друга Джоуль и Ленц показали, что при протекании тока, в проводнике выделяется количество теплоты:

Если ток изменяется со временем, то

.

Это закон Джоуля–Ленца в интегральной форме.

Отсюда видно, что нагревание происходит за счет работы, совершаемой силами поля над зарядом.

Соотношение (7.7.4) имеет интегральный характер и относится ко всему проводнику с сопротивлением R, по которому течет ток I. Получим закон Джоуля-Ленца в локальной-дифференциальной форме, характеризуя тепловыделение в произвольной точке.

Тепловая мощность тока в элементе проводника Δl, сечением ΔS, объемом равна:

.

Удельная мощность тока

.

Согласно закону Ома в дифференциальной форме . Отсюда закон Джоуля — Ленца в дифференциальной форме характеризующий плотность выделенной энергии:

Так как выделенная теплота равна работе сил электрического поля

,

то мы можем записать для мощности тока:

Мощность, выделенная в единице объема проводника .

Приведенные формулы справедливы для однородного участка цепи и для неоднородного.

ens.tpu.ru

Закон джоуля ленца в интегральной и дифференциальной формах

Пусть на участке электрической цепи протекает постоянный ток I (рис. 6.7.). Напряжение U на концах этого участка численно равно работе, совершаемой электрическими силами при перемещении единичного положительного заряда по этому участку. Это следует из определения напряжения (см. 3.16).

.

Отсюда работа A = q × U. За время t по участку будет перенесён заряд q = I × t и при этом будет совершена работа:

Это выражение работы электрического тока справедливо для любых проводников.

Работа, совершаемая в единицу времени — мощность электрического тока:

. (6.15)

В системе СИ мощность измеряется в ваттах:

1 Вт = 1 Дж/1 с = 1 В × 1 А.

Работа электрического тока (6.14) может затрачиваться на нагревание проводника, совершение механической работы (электродвигатель) и на химическое действие тока при его течении через электролит (электролиз).

Если химическое действие и механическая работа при течении тока не производятся, то вся работа электрического тока расходуется только на нагревание проводника:

Закон о тепловом эффекте электрического тока (6.15) был экспериментально установлен независимо английским учёным Д. Джоулем и русским академиком Э.Х. Ленцем. Формула (6.15) — математическая запись закона Джоуля-Ленца в интегральной форме, позволяющая вычислить количество теплоты, выделяющейся в проводнике. Для того, чтобы характеризовать тепловой эффект тока в различных точках проводника, выделим в нём элементарный участок трубки тока (рис. 6.8.). Запишем для этого элемента закон Джоуля-Ленца:

.

Здесь мы использовали хорошо известные соотношения:

— сопротивление участка;

i = lE — закон Ома в дифференциальной форме;

dV = dl × dS — объём выделенного элемента трубки тока.

Разделив количество выделившейся теплоты dQ на время dt, получим тепловую мощность электрического тока:

, .

Отнеся эту величину к объёму элемента трубки тока, придём к удельной тепловой мощности:

. (6.16)

Перед нами закон Джоуля-Ленца в дифференциальной форме.

Учитывая, что i = lE = , это выражение можно записать ещё и так:

, .

Подводя итог, ещё раз запишем формулы законов постоянного тока, рассмотренные на этой лекции.

Закон Ома для участка цепи:

в интегральной форме: ;

в дифференциальной форме: .

в интегральной форме: Q = I 2 × R × t;

в дифференциальной форме: Руд = × Е 2 =.

fizika-student.ru

Закон Джоуля-Ленца в интегральной и дифференциальной формах

Теперь подробнее обсудим величину DU (которая представляет в расчетах изменение внутренней энергии) применительно к проводнику, по которому начинает течь ток.

Постепенно, выбранный проводник будет нагреваться, а это значит, что будет увеличиваться его внутренняя энергия. По мере нагрева разность между температурой проводника и окружающей его среды будет увеличиваться. Согласно закономерности Ньютона, вместе с этим возрастать будет и мощность теплоотдачи проводника. Таким образом, через какое-то время температура проводника, достигнув определенного значения, перестанет увеличиваться. В этот момент величина DU будет равной нулю, и перестанет изменяться внутренняя энергия проводника.

Тогда для этого состояния первый закон термодинамики будет выглядеть так: A = – Q. То есть когда не меняется внутренняя энергия проводника, работа тока целиком превращается в теплоту. Используя этот вывод, можем записать все три рассмотренные формулы для расчета работы тока в несколько ином виде, в конечном итоге получаем закон Джоуля-Ленца в интегральной форме:

На первый взгляд все формулы могут считаться равноправными, однако только последняя справедлива всегда, поэтому она и считается законом. А вот остальные две справедливы только при определенных условиях, поэтому законом считаться не могут.

Закон Джоуля-Ленца в дифференциальной форме выглядит совершенно по-иному, мы рассмотрим только общий вариант, без дополнительных выведений и вычислений, который выглядит так:

Где:

· — является мощностью тепла, выделяемого в единице объёма;

· — плотность электрического тока;

· — это напряжённость электрического поля;

· — проводимость выбранной среды.

Так в общих чертах выглядит закон Джоуля-Ленца и его интегральная и дифференциальная формы. Хотя, если проводить дальнейшие вычисления, то закон может принимать и другие формы.

21. Закон Ома для неоднородного участка цепи (обобщенный закон Ома). Закон Ома для замкнутой цепи.

Участок цепи, содержащий источник ЭДС, называется неоднородным(рис.5.11). Всякий источник ЭДС характеризуется величиной ЭДС εивнутренним сопротивлением r.

— напряжение на концах участка цепи.

Рис.5.11. Неоднородный участок цепи.

Закон Омадлянеоднородного участка цепи имеет вид:

При соединении концов неоднородного участка цепи идеальнымпроводником образуется замкнутая цепь, в которой потенциалы φ1иφ2 выравниваются и мы приходим к закону Ома для замкнутой(илиполной)цепи:

Если сопротивление внешней цепи , то имеем случай короткого замыкания. В этом случае в цепи течетмаксимальный ток:

При имеем разомкнутую цепь. В этом случае ток в цепи равен нулю:

22. Правила Кирхгофа для разветвленных цепей постоянного тока

Правило 1: в любом узле сумма входящих токов и выходящих равна нулю. Оно учитывает закон сохранения электрического заряда.

При этом токи, идущие к узлу, и токи, исходящие из узла, следует считать величинами разных знаков.

Правило 2: алгебраическая сумма произведений сил токов на сопротивления при обходе контура равна сумме ЭДС в контуре. Учитывается закон сохранения энергии.

Для упрощения расчетов сложных электрических цепей, содержащих неоднородные участки, используются правила Кирхгофа, которые являются обобщением закона Ома на случай разветвленных цепей.

В разветвленных цепях можно выделить узловые точки (узлы), в которых сходятся не менее трех проводников (рис. 1.10.1). Токи, втекающие в узел, принято считать положительными; вытекающие из узла – отрицательными.

Первое правило Кирхгофа является следствием закона сохранения электрического заряда.

В разветвленной цепи всегда можно выделить некоторое количество замкнутых путей, состоящих из однородных и неоднородных участков. Такие замкнутые пути называются контурами. На разных участках выделенного контура могут протекать различные токи. На рис. 1.10.2 представлен простой пример разветвленной цепи. Цепь содержит два узла a и d, в которых сходятся одинаковые токи; поэтому только один из узлов является независимым (a или d).

В цепи можно выделить три контура abcd, adef и abcdef. Из них только два являются независимыми (например, abcd и adef), так как третий не содержит никаких новых участков.

Второе правило Кирхгофа является следствием обобщенного закона Ома.

Запишем обобщенный закон Ома для участков, составляющих один из контуров цепи, изображенной на рис. 1.10.2, например, abcd. Для этого на каждом участке нужно задать положительное направление тока и положительное направление обхода контура. При записи обобщенного закона Ома для каждого из участков необходимо соблюдать определенные «правила знаков», которые поясняются на рис. 1.10.3.

Для участков контура abcd обобщенный закон Ома записывается в виде:

Для участка bc: I1R1 = Δφbc1.

Для участка da: I2R2 = Δφda2.

Складывая левые и правые части этих равенств и принимая во внимание, что Δφbc = – Δφda , получим:

Аналогично, для контура adef можно записать:

Второе правило Кирхгофа можно сформулировать так: алгебраическая сумма произведений сопротивления каждого из участков любого замкнутого контура разветвленной цепи постоянного тока на силу тока на этом участке равна алгебраической сумме ЭДС вдоль этого контура.

Первое и второе правила Кирхгофа, записанные для всех независимых узлов и контуров разветвленной цепи, дают в совокупности необходимое и достаточное число алгебраических уравнений для расчета значений напряжений и сил токов в электрической цепи. Для цепи, изображенной на рис. 1.10.2, система уравнений для определения трех неизвестных токов I1, I2 и I3 имеет вид:

23. Работа и мощность постоянного электрического тока. КПД источника тока.

Работа А электрического тока на участке цепи с электрическим сопротивлением R за время D t равна:

A = I · U · ? t = I 2 · R · ? t

Мощность P электрического тока равна отношению работы А тока ко времени D t, за которое эта работа совершена:

P = A / ? t = I · U = I 2 R = U 2 / R.

Работа А электрического тока равна количеству теплоты Q, выделяемому проводником (если не совершается механическая работа и не происходят химические реакции):

Этот закон был экспериментально установлен английским ученым Джеймсом Джоулем (1818-1889) и русским ученым Эмилием Ленцем (1804-1865) и поэтому носит название закона Джоуля — Ленца.

Рассмотрим элементарную электрическую цепь, содержащую источник ЭДС с внутренним сопротивлением r, и внешним сопротивлением R (рис. 7.5).

КПД всегда определяем как отношение полезной работы к затраченной:

Полезная работа – мощность, выделяемая на внешнем сопротивлении Rв единицу времени. По закону Ома имеем: а тогда

.

24. Вывод закона Ома из классической теории электропроводимости металлов.

Друде считал, что сразу после очередного соударения электрона с ионом кристаллической решетки скорость упорядоченного движения электрона равна нулю. Предположим, что напряженность поля не изменяется. Тогда под действием поля электрон получит постоянное ускорение равное

и к концу пробега скорость упорядоченного движения достигнет значения

где t — среднее время между двумя последовательными соударениями электрона с ионами решетки. Друде не учитывал распределение электронов по скоростям и приписывал всем электронам одинаковое значение средней скорости . В этом приближении , где — среднее значение длины свободного пробега, — скорость теплового движения электронов. Подставим это значение t в формулу (18.2)

Скорость изменяется за время пробега линейно. Поэтому ее среднее (за пробег) значение равно половине максимального

Подставив это выражение в

Плотность тока оказалась пропорциональной напряженности поля. Следовательно, мы получили закон Ома. Согласно коэффициент пропорциональности между j и Е представляет собой проводимость

Если бы электроны не сталкивались с ионами решетки, длина свободного пробега, а, следовательно, и проводимость были бы бесконечно велики. Таким образом, электрическое сопротивление металлов обусловлено соударениями свободных электронов с ионами.

25. Вывод закона Джоуля-Ленца из классической теории электропроводности металлов. Затруднения этой теории.

К концу свободного пробега электрон приобретает скорость , и, следовательно, дополнительную кинетическую энергию, средняя величина которой

Столкнувшись с ионом, электрон по предположению полностью теряет приобретенную им за время пробега скорость, и передает энергию кристаллической решетке. Эта энергия идет на увеличение внутренней энергии металла, проявляющееся в его нагревании. Каждый электрон претерпевает за секунду в среднем 1/t соударений, сообщая всякий раз решетке энергию . Следовательно, в единице объема за единицу времени должно выделяться тепло

где n — число электронов проводимости в единице объема. Величина есть не что иное, как удельная мощность тока. Множитель при совпадает со значением (18.3) для закона Ома. Таким образом. Мы пришли к выражению закона Джоуля-Ленца в дифференциальной форме.

Теплоемкость металлов.Теплоемкость металла складывается из теплоемкости его кристаллической решетки и теплоемко­сти электронного газа. Поэтому атомная (т. е. рассчитанная на 1 моль) теплоемкость металла должна быть значительно большей, чем атомная теплоемкость ди­электриков, у которых нет свободных элек­тронов. Согласно закону Дюлонга и Пти (см. §73), теплоемкость одноатомного кристалла равна 3R.Учтем, что теплоем­кость одноатомного электронного газа равна 3 /2R. Тогда атомная теплоемкость металлов должна быть близка к 4,5R. Однако опыт доказывает, что она равна 3R, т. е. для металлов, так же как и для диэлектриков, хорошо выполняется закон Дюлонга и Пти. Следовательно, наличие электронов проводимости практически не сказывается на значении теплоемкости, что не объясняется классической электрон­ной теорией.

Указанные расхождения теории с опы­том можно объяснить тем, что движение электронов в металлах подчиняется не законам классической механики, а зако­нам квантовой механики и, следовательно, поведение электронов проводимости надо описывать не статистикой Максвелла — Больцмана, а квантовой статистикой. По­этому объяснить затруднения элементар­ной классической теории электропровод­ности металлов можно лишь квантовой тео­рией, которая будет рассмотрена в даль­нейшем. Надо, однако, отметить, что клас­сическая электронная теория не утратила своего значения и до настоящего времени, так как во многих случаях (например, при малой концентрации электронов проводи­мости и высокой температуре) она дает правильные качественные результаты и является по сравнению с квантовой тео­рией простой и наглядной.

26. Несамостоятельный и самостоятельный газовые разряды.

Дата добавления: 2016-07-22 ; просмотров: 3794 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

poznayka.org

Соотношение (17.13) выражает закон Джоуля-Ленца в интегральной форме. Введем плотность тепловой мощности , равную энергии выделенной за единицу время прохождения тока в каждой единице объема проводника

где S — поперечное сечение проводника, — его длина. Используя (1.13) и соотношение , получим

Но — плотность тока, а , тогда

с учетом закона Ома в дифференциальной форме , окончательно получаем

Формула (17.14) выражает закон Джоуля-Ленца в дифференциальной форме: объемная плотность тепловой мощности тока в проводнике равна произведению его удельной электрической проводимости на квадрат напряженности электрического поля.

17.6. Разветвленные цепи. Правила Кирхгофа

Расчет разветвленных цепей упрощается, если пользоваться правилами Кирхгофа. Первое правило относится к узлам цепи. Узлом называется точка, в которой сходится более чем два тока. Токи, текущие к узлу, считается имеют один знак (плюс или минус), от узла — имеют другой знак (минус или плюс).

Первое правило Кирхгофа является выражением того факта, что в случае установившегося постоянного тока ни в одной точке проводника и ни на одном его участке не должны накапливаться электрические заряды и формулируется в следующем виде: алгебраическая сумма токов, сходящихся в узле, равна нулю

Второе правило Кирхгофа является обобщением закона Ома на разветвленные электрические цепи.

Рассмотрим произвольный замкнутый контур в разветвленной цепи (контур 1-2-3-4-1) (рис. 1.2). Зададим обход контура по часовой стрелке и применим к каждому из неразветвленных участков контура закон Ома.

Сложим эти выражения, при этом потенциалы сокращаются и получаем выражение

В любом замкнутом контуре произвольной разветвленной электрической цепи, алгебраическая сумма падений напряжений (произведений сил токов на сопротивление) соответствующих участков этого контура равна алгебраической сумме эдс входящих в контур.

При решении задач рекомендуется следующий порядок:

Произвольно выбрать и обозначить на чертеже направление токов во всех участках цепи.

Записать уравнение для всех n-1 узлов.

Выделить произвольный контур в цепи и выбрать направление обхода. Записать второе правило Кирхгофа.

18. Классическая теория электропроводности

Почти сто лет тому назад П.Друде разработал теорию электро- и теплопроводности металлов. В теории Друде валентные электроны металла рассматривались как классический «электронный» газ (идеальный газ из электронов). Применение к этой модели основных положений элементарной молекулярно-кинетической теории привело к поразительным результатам. На основе этих представлений оказалось возможным объяснить закон Видемана-Франца, объяснить эффект Холла, возникновение контактной разности потенциалов, явление термоэлектронной эмиссии. Для всех перечисленных явлений удалось получить количественные зависимости между величинами, определяющими то или иное явление. Теория Друде не свободна от внутренних противоречий. Современная физика твердого тела базируется на представлениях квантовой механики, а для описания свойств электронного газа используется квантовая статистика, отличная от статистики Максвелла — Больцмана. Вместе с тем теория Друде не потеряла своей полезности: отдельные ее результаты поражают своей точностью, а методы теории Друде на редкость физически наглядны.

В рамках элементарной кинетической теории полагаем, что валентные электроны (электроны проводимости) металлов представляют собой одинаковые твердые сферы, двигаются они по прямым линиям до столкновения друг с другом, время контакта частиц пренебрежимо мало по сравнению с временем «свободного» движения.

Объемную концентрацию электронов проводимости можно оценить выражением:

где — объемная плотность металла (кг/м 3 ), Z — валентность химического элемента, Na — число Авогадро, А — относительная атомная масса элемента.

Заряд электрона е =-1,6*10 -19 Кл, масса электрона me = 0,91*10 -30 кг. Величину «е» ниже будем считать положительной, а знак заряда электрона будем учитывать непосредственно в формулах.

Плотность электронного газа:

значительно больше плотности обычных газов при нормальных условиях.

В теории Друде пренебрегают сильным электрон-электронным и электрон-ионным взаимодействием, полагая, что внутри металлического тела отдельный электрон практически ведет себя как свободная частица. Это дает нам право считать электрон «нейтральной» частицей при расчете взаимодействия ее с остальными частицами, но способной переносить заряд при расчете параметров электрического тока.

П.Друде полагал, что электроны в своем движении сталкиваются с атомами (ионами) кристаллической структуры металла (столкновения электрон-электрон значительно менее вероятны). Картина последовательных соударений электрона с атомами кристаллической решетки показана на рис. 6.1.

Современная теория оценивает вероятность такого механизма не очень высоко: рассеяние электронов имеет и другие механизмы. Поэтому не следует наглядную картину рис.6.1 понимать в буквальном смысле.

Будем считать, что отношение

представляет собой вероятность соударения электрона с рассеивающим центром, где dt — промежуток времени, — время релаксации или время свободного пробега. Предполагается, что величина не зависит от пространственного положения электрона и не меняется от соударения к соударению. Предполагается также, что электроны находятся в состоянии теплового равновесия со своим окружением. Механизм соударения детализируется следующим образом: скорость электрона после соударения статистически не связана со скоростью электрона до соударения (электрон «забыл» свою предысторию), направление скорости после соударения — случайное, хаотическое, а ее величина соответствует той температуре, которая имеет место в окрестности точки соударения.

studfiles.net

Смотрите еще:

  • Космические законы Космические законы вселенной Еще одним важным космическим законом вселенной является закон творения. Мы – творцы, каждая наша мысль (любая мысль материальна!), подкрепленная намерением, действует на […]
  • Образец планов мероприятий по локализации и ликвидации последствий аварий План локализации и ликвидации аварий (ПЛА) План ликвидации аварий (ПЛА) – документ, устанавливающий основные требования по организации локализации и ликвидации аварий. Разрабатывается на объектах, возможные […]
  • Пункт контракта разрешение споров Пункт контракта разрешение споров Все споры и разногласия между клиентами и компанией по поводу предоставления компанией услуг и осуществления торговли на рынках ценных бумаг и совершения иных действий, […]
Закладка Постоянная ссылка.

Обсуждение закрыто.